Wing

Wing Tanks Installed

Posted on Updated on

To cushion the bottom of the tank I got some 1/8″ thick neoprene. The best deal I found was sold as “tool box drawer liner.” I cut it so it is wider than the bottom so it wrapped up the sides a little then notched out the inboard rear edge to match the plywood.

The tank needed two holes, one for the drain and one for the fuel level sensor. I first drilled a small pilot hole then used a 1/2″ forsner bit. Never use a regular twist drill bit for this step, you will end up with a triangular shaped hole instead of perfectly round and the bushing won’t seal. 

Small pilot hole in tank
Small pilot hole in tank
1/2 inch hole in tank drilled with forsner bit
1/2 inch hole in tank drilled with forsner bit

Then installed the rubber bushing.

Fuel tank bushing
Fuel tank bushing

At this point I realized this particular tank is too deformed to install the fuel level sensor because the top and bottom are curved inward so there is not enough clearance for the sensor.

Knowing these tanks do expand the first time they are filled with gasoline I had to stop the installation and fill this tank with gas and hope that resolves the problem. After a few days the tank was still deformed, so I sealed the tank and put a few psi of air pressure in it. The following day I removed the air pressure and let it sit with gasoline in it. After a few more days the tank is back to its normal shape and has held that shape for over a week. 

Now I can install the fuel level sensor. I made sure that the sensor was about 1/4″ above the bottom of the tank and pressed it into the bushing.

Tank with fuel level sensor installed
Tank with fuel level sensor installed

I was concerned that the polycarbonate cover might bump the calibration switch on the sender so I cut a ring of plywood to protect the switch. I used some silicone to hold the ring in place.

Small plywood ring to protect calibration button
Small plywood ring to protect calibration button

The drain hole in the bottom of the tank was drilled and fittings installed.

Tank drain
Tank drain

Now the tank was installed into the wing. To hold it in place I purchased some tie down straps. They were way too long so I cut them shorter and heat welded the end so it does not fray. I routed then under the plywood and diagonal supports then over the top of the tanks. 

Two straps hold tank in place
Two straps hold tank in place
Tank strap buckle
Tank strap buckle

The fuel line was routed from the elbow to a tee. Then to the drain and quick disconnect. This was not an easy task to accomplish without kinking the lines. It would have been easier if the quick disconnect was moved an inch or two forward but that would have made the quick disconnect higher which is undesired and more likely to get bumped by my elbows when sitting in the cockpit. Maybe cutting one barb off of the tee would help too.

Fuel line routing in wing
Fuel line routing in wing
Fuel line routing in wing
Fuel line routing in wing

After installing the cover panel I’m amazed at how well it looks. 

Tank cover panel installed
Tank cover panel installed

Not much remains on the wings now. Grease aileron bearings, safety wire aileron bracket bolts, install wing tips and I need to get the rest of the wing polished so it shines like the tank cover and ailerons.

Advertisements

Updated Wing Wizard

Posted on

Long time since I’ve posted anything but I’ve been busy painting. So glad I built these wing racks, made working in this small garage so much easier.

The first wing wizard worked ok, after using it a few times I realized it needed some improvements. To start with the base needed to have less flex in it. So I used a 4×4 for the main cross piece and some 1×4 for the caster supports. A 4×4 was way Overkill but it was cheap and simple. Besides the extra weight adds some stability.

Notched end for 1x4
Notched end for 1×4
Add vertical support to the caster arms
Add vertical support to the caster arms
Padded wing cradle
Padded wing cradle
Lock pin to secure strap
Lock pin to secure strap
Strap laced into carpet
Strap laced into carpet

2″ PVC was used to connect the two bases, the bottom tee was notched to allow the rotation of the bases. The base was drilled in the center and a piece of PVC was inserted to fit up into the tee.

When rotating the wing, locking the wing in place is easy with the cam lock nuts from Rockwell.

To raise and lower each side I purchased a couple trailer jacks from HarborFreight and mounted them with some exhaust pipe clamps. Don’t get tempted to get a square tubing jack, you want the arm to rotate so you don’t have to remove the arm to clear the struts.

To hold the wing some soft carpet was combined with 2″ tie down straps to create a nice cradle less likely to damage the wing than the previous design.

Wing gently cradled by the carpet
Wing gently cradled by the carpet

Both wings easily store in my one car garage.

Wings stored in garage
Wings stored in garage

I did write down all the dimensions but have not taken the time to post it all here. The bases have the same measurements so should not be hard to figure it out from my original design. If you are interested in this information leave a comment, might motivate me to make a more detailed post.

Lonesome Buzzard Wing Wizard 3000

Posted on

Installing the wings, even with a helper, is a pain. While I can do it alone and it’s not that time consuming it can be frustrating and it’s really easy to damage the wings moving them around. I’ve been wanting to make this process easier since I built my wing carriers long ago and I finally came up with an idea that works!

I’ve basically built a set of sawhorses, on wheels, that transforms into a wing rack while the wing is resting on the sawhorses. Watch the video to see it in action:

Now, time to start building this, your gonna need some materials:

Qty Material Length Description
2 2″ PVC pipe 62-1/2″ Main horizontal support
2 2″ PVC Pipe 12″ Main vertical support
2 2″ PVC pipe 1-3/4″ Reducer connector
2 2″ PVC pipe 3-1/2″ Rotator for base
2 1.5″ PVC pipe 25″ Vertical slider
1.5″ PVC pipe 6″ Arm rotator
2 1.5″ PVC pipe 20″ Lower arm
2 1.5″ PVC pipe 28″ Upper Arm
6 1.5″ PVC pipe 1-3/4″ 45° connectors
2 1.5″ PVC pipe 3-3/4″ Bungee holder
2 3/4″ PVC pipe 3-1/2″ Bungee hook
2 3/4″ PVC cap N/A Bungee hook
2 2″ PVC 4-way N/A
2 2″ PVC Tee N/A
2 2″ to 1-1/2″ PVC reducer N/A
2 3″ sch 30 cap N/A Mount to base
2 3″ to 2″ sch 30 bushing N/A Mount to base rotator
8 1-1/2″ PVC 45° elbow N/A
4 1-1/2″ PVC cap N/A
4 1-1/2″ PVC Tee N/A Arm rotator assembly
6 Wing Nuts N/A Replacement wing nuts for lawnmower handles
8 3″ casters N/A All must be casters, preferably locking too.
32 5/16-18X1″ carriage bolts and nuts N/A Attach casters
?? Various small screws N/A
6 1×4 common board 44″ Base
4 1×4 common board 18″ Attach casters
2 1×4 common board 56″ Attach casters
2  bungee cord 4′ Flat cord bungee

Note: Do not use “sanitary” fittings, they will not work.

Many of the PVC parts will need modified, a lathe would make most of the modifications easier. A mill would be nice too. I used a Dremel and a drill press.

Let’s start at the bottom and work out way up. 

The ends of two 44″ boards need notched to accept the 18″ boards. The notch in the 18″ boards starts 4″ from the end. I glued the there pieces together.

The rear two 44″ boards have a small notch cut in them to clear the 18″ boards. This board was glued and screwed to the back side of the platform.

The front 44″ board also needs notched but it needs to be lower. This board was added as a modification so some pictures might be missing it.

Before gluing this board I pre-tensioned it with some twist to counteract the off-center weight when the wing is in the storage position.


Modified base to prevent leaning
Modified base to prevent leaning

If your wondering why the board is pre-tensioned look at the picture below.

Tensioned platform vs non-tensioned platform
Tensioned platform vs non-tensioned platform

The casters are bolted to corners and the 3″ PVC cap is bolted in the middle.

This picture was taken before I added the front board in the previous step
This picture was taken before I added the front board in the previous step

Grab the two 2″ tees and cut a notch for the wing bolt that goes 90°. It is ok to go more than 90 but if you can make it exactly 90 you will be happier with the end result. Remember to make a right and left version, the tees should be mirrors if one another.

Now grind out the inside of the notched part of the tee until a 2″ pipe can easily rotate within the tee. Now glue the 3-1/2″ long 2″ pipe into the 3″ to 2″ reducer. Once the glue is dry insert it into the tee, ensure it freely rotates when fully inserted. Now mark the center of the notch onto the pipe. Drill a hole, use a small chisel to make the hole square for the carriage bolt.

The carriage bolts for the wing nuts need modified a little bit to better match the contour of the pipe. A vice and a file made this pretty easy.

Grab the 12″ long 2″ pipes. Cut a slot in them, this will be the height adjustment.  I used my drill press to drill a line of holes then used a file to produce what you see here.

Grind out the inside of the two 2″ to 1-1/2″ reducers until a 1-1/2″ pipe easily slides through the adapter.

You can now assemble the main part of the base.

Set the PVC base into the caps. Now adjust the base rotation wing nuts. The vertical boards on each caster platform should be facing each other.

Once adjusted to your liking use some small screws to attach the reducer and cap.
Now get two of the 1-1/2″ tees and notch them for the wing nut. Again remember​ to make a right and left.  The length of the slot is not too important, I made mine much more than 90° but depending on how much rotation you need you might want to do something different.

Now grind out the inside of the tee until a 1-1/2″ pipe easily rotate inside the tee.  Go ahead and glue the 25″ 1-1/2″ pipes to the tees. You might be tempted to cut square hole for the adjuster, but wait till later when you can better align everything first.

Now take the remaining PVC parts and build two candy canes, again be sure to make a right and left.

The 1-1/2″ long PVC pipe needs a notch cut in it so the bungee cord can exit the pipe. The “cap” will slide over the end and is secured with two small screws.

Notched four bungee cord
Notched four bungee cord

A board was cut to create a flat platform for the bottom of the wing. I used a 2.5″ hike saw to notch the end and a 45° bevel wad added with the router. 

The board was drilled and counter sunk then attached with some drywall screws I had laying around.  Then it was covered with some self adhesive pipe insulation. 

Pipe insulation to prevent scratches
Pipe insulation to prevent scratches
Pipe insulation to prevent scratches
Pipe insulation to prevent scratches

To adjust the tension on the bungee, wrap the cord around the hook before inserting it into the pipe. I did need to bend the hook a little too make it narrow enough to fit into the pipe.

Now you can assemble everything and mark the locations for the adjusting bolts.

Bolt Length

Posted on Updated on

A few weeks ago I ran across an article taking about aircraft bolts that answered lots of questions I had. One thing that concerned me on my airplane is that some of the bolts appeared to be too short. Turns out I was right, some of the bolt sizes on the plans are wrong according to general aviation practices. I suspect this was done to save weight.

The article mentioned above suggested that there should be at most one thread inside the hole, the bolt must go all the way through the nut but if there are more than three threads through the nut the bolt might be too long. I also looked up what the FAA says which is in AC 43.13-1B chapter 7.

7-37. GRIP LENGTH. In general, bolt grip lengths of a fastener is the thickness of the material the fastener is designed to hold when two or more parts are being assembled.

…………

All bolt installations which involve self-locking or plain nuts should have at least one thread of the bolt protruding through the nut.

FAA AC43.13-1B

Armed with proper knowledge I looked at the bolts holding the aileron brackets. As you can see the AN3-6 the plans call for are too short.

The bolt does not have at least one thread protruding through the nut.
The bolt does not have at least one thread protruding through the nut.

Not only is the overall length of the bolt too short it’s grip length is too short. More than one thread is in the hole, this could allow the bolt too be overtightened crushing the wood.

I also would feel much safer with those bolts safety wired so I ordered up some AN3-7 with drilled heads. With the AN3-7 one thread protrudes through the nut.

One thread is protruding through the nut

With drilled heads I can safety wire the bolts ensuring my aileron will remain attached.

Drilled head on aileron bracket bolt
Drilled head on aileron bracket bolt

Rib stitching

Posted on Updated on

TEAM says rib stitching is not necessary, the fabric manufacturer says it is. To make matters worse both are technically right.

On the Minimax, fabric glue is sufficient to keep the fabric attached to the ribs. But what would happen is there was some sort of failure?

Pirate Pilot over on www.lonesomebuzzards.com posted a link to a video that makes some convincing arguments. The video discusses the cause of a Bushmaster ultralight (C-IAUE) crash that resulted in two deaths. The aileron gap seal broke away from the main structure allowing the fabric to separate from the entire top of the wing. While the Minimax wing has slightly different construction there have been numerous maxes that have had partial separation of the aileron gap seal so it is conceivable that a Minimax could have the same type of catastrophic failure.

I can’t say that rib stitches would keep the fabric attached to the wing if my aileron gap seal were to separate from the wing. However I am sure that without the stitching the glue alone is not strong enough to keep the fabric attached if the gap seal separated.

Rib lacing is not exactly cheap the lacing cord, reinforcement tape and finishing tape set me back around $150. It is time consuming too took me about eight hours to do the left wing, bet the right wing will only take about five hours now that I have some experience.

I have read about some people stitching their wings without reinforcement tape and in my opinion all they did was waste time and materials. OK maybe they added a little strength but using the reinforcement tape increases the strength by orders of magnitude. The lace holds just a 1/4″ piece of fabric on the bottom and since I installed rib caps 1/2″ on the top. A 1/2″ by 1/8″ strip of fabric at each lace is not very strong and could easily allow the fabric to rip around the lacing.

I used three inch spacing for a total of twelve stitches on each rib. Without reinforcing tape that gives a total surface area of just 0.75 square inches of the fabric being mechanically attached to each rib top. The reinforcing tape is extremely strong, it will not rip under the forces imposed on the Minimax. The tape drastically increases the surface area holding the fabric to about 18 square inches on each rib top! 

You will need a special needle to stitches around the compression members. I made mine with some music wire a hammer and drill. It’s the curved needle in the picture below. The straight needle purchased and put a small bend on the end to make it more useful.

Rib lacing needles

I used the flat lacing cord because it gives a nicer appearance .

Rib stitch and reinforcement tape

You might have noticed I used a blue chalk line to mark where the laces go. Having them all in nice straight rows looks great, I think it looks nicer than not lacing.

To finish the job I used 2″ finishing tape to cover the stitches and holes.

Finishing tape over rib stitches
Finishing tape over rib stitches
Fully stitched Minimax wing
Fully stitched Minimax wing

After applying primer they already look great.

Stitches after paint primer
Stitches after paint primer

I basically followed the directions in the polyfiber book. To learn how to do the lacing I watched this video.

You won’t regret rib lacing your wings and it very well could save your life.

Wing Tank Part Four

Posted on Updated on

The lexan is trimmed to fit into the opening, since it is 1/16″ just like the plywood trim around the opening the top surface is flush giving it a great look.

Lexan tank cover

Holes are drilled every 2″ around the perimeter of the lexan then screwed into place.

To prevent the holes in the wood from stripping over time some thin CA is soaked into the holes and allowed to dry before reinstalling the lexan cover.

The lexan is marked and drilled to create an opening for the filler neck. To locate the filler neck position I installed the tank and used a square to locate the center front of the neck. Note that this picture was taken after making the hole and is intended to help show how this step was performed but this step was performed without the lexan in place.

Large square used to locate filler neck location

Then the lexan was installed and the center of the filler neck was marked then drilled using a 2 1/2″ hole saw.

Square used to mark location of filler neck on lexan

The final result looks great.

Tank cover installed

Because I will need to remove the wings I wanted quick disconnects for the fuel line and some way to drain the fuel.

For the drain I got a 90° 1/8″ NPT to 1/2″ barb brass and a quarter turn drain valve.

Fuel drain valve

Some blocks were glued in place to hold the drain and a piece of plywood is screwed on top to keep it from moving.

Fuel drain and disconnect mounts
Fuel drain and disconnect mounts

A piece of 1/8″ plywood was glued to the root rib to hold the panel mount quick disconnect.

Quick disconnect assembly

With the disconnect removed the wing was mounted if the fuselage so the hole could be marked and drilled into the fuselage. Once drilled the quick disconnect was reinstalled to test the fit.

Fuselage hole for fuel disconnect

The hole is just large enough so I can get my finger into the release tab. The 90° make disconnect will make routing the fuel line’s much easier.

90° fuel disconnect in fuselage

Wing Tank Part Two

Posted on Updated on

With the drag brace supports in place it’s time to frame in the opening at the top of the wing. I cut a piece of RS-17 to length and notched the side of it where the gussets are located on rib #2 then glued to the side of the rib.

RS-17 glued to rib #2
Notch for gusset so it fits against the RS-1
PVC pipe clamps very helpful

Next I located the rear of the opening and cut the plywood connecting the root and #1 rib. Then removed the front portion of the plywood.

Cut plywood at rear of opening

Another RS-17 was cut to fit between the root and #1 rib. At the rear of the opening the RS-17 is notched to make room for a horizontal RS-17.

After checking the fit it was glued into place.

The clamped RS-1 keep the RS-17 level while for dries

Once the glue was dry rib #1 was cut at the rear of the opening where the notch was made in the RS-17.

Another RS-17 is cut and glued into the notch forming the rear of the opening.

RS-17 at rear opening

A 1/16″ ply gusset is added to the bottom at ribs #1 and #2 to strengthen the rear opening.


A 1/16″ piece of ply is added to the rear of the opening and over the root rib.

Plywood creates recessed opening for tank cover

Lastly a piece of RS-3 is glued to the front spar to provide a surface for attaching the lexan cover.

Rubber bands make great clamps

Now it’s time to install the tank floor.

Wing Tank

Posted on Updated on

Since I decided to register I can carry more than 5gal of fuel so I decided to install wing tanks. I never did like the fuselage tank so I am going to remove it.

Following the plans for the wing tanks I added two more RS-9 ‘drag’ braces to create a support for the tank. These need to be notched on the front with just 1/4″ sitting on top of the bottom front spar cap.

Notched RS-9 for tank support
Notched RS-9 on front spar

On the inboard side of these braces I put a piece of RS-5 between the ribs where the brace will be located.

RS-5 spacer for RS-9 tank support
RS -9 tank support at root rib

I glued those in place and let the glue set over night.

The next task is the only difficult part of adding wing tanks. The existing RS-9 drag brace needs removed and a new one installed lower. Had I known this I would have installed the inboard drag brace in a tank ready manner from the beginning. TEAM should update the plans so they all show the inboard drag brace in a tank ready manner.

After getting the drag brace removed I made a new one. The new one glues to the side of the spar cap instead of on top of the spar cap. At the rear spar the drag brace top is flush with the spar cap top.

RS-13 gusset at rear spar

At the front spar a 3″ piece of RS-5 is glued to the top of the spar cap.

RS-5 spacer for plywood gusset

The brace top should be flush with the top of the newly added RS-5.

Once the brace glue is dry corner gusset blocks made from RS-13 are glued in place.

Glueing rear gusset
Glueing front gusset

After the corner blocks dry plywood gussets made from RS-553 are glued in place.

Glue plywood gusset

Root Rib Opening

Posted on Updated on

So I have access to the root attachment points on the wing a couple holes need cut in the root rib. I cut some 1/4″ sticks and put them around the perimeter of the area I want to cut out then used the flush cut router but to cut the hole.

image

The guests did a great job holding the sticks in place.

image

After cutting both holes it looks like this.

image

After removing the sticks the inside looks like this.

image

image

Strut Bracket

Posted on Updated on

The strut brackets in the bottom of the wing protrude through the fabric. I thought it would be best if the fabric can be glued to some wood around the brackets.

The rear spar was easy. I cut a piece of 1/8″ ply with two slots for the bracket.

image

A strip of 1/8″ ply is needed between the spar and the slotted plywood to achieve the correct height.

image

The front spar was more difficult. I started by cutting out the plywood nose wrap and a piece of 1/8″ ply as shown in the picture below.

image

The 1/8″ ply was glued inside the wing.

A hatch cover was fabricated from some 1/8″ and 1/16″ ply.

image

Some automotive fasteners were used to hold the hatch on.

image

Next an RS-10 block was cut in an unusual way.

image

I then glued a RS-1 between the block and the adjacent rib.

image

image

Next I added a slotted sheet of 1/16″ ply and one of the transition ramps I made earlier.

image